739 research outputs found

    Kinetic energy change with doping upon superfluid condensation in high temperature superconductors

    Full text link
    In conventional BCS superconductors, the electronic kinetic energy increases upon superfluid condensation (the change DEkin is positive). Here we show that in the high critical temperature superconductor Bi-2212, DEkin crosses over from a fully compatible conventional BCS behavior (DEkin>0) to an unconventional behavior (DEkin<0) as the free carrier density decreases. If a single mechanism is responsible for superconductivity across the whole phase diagram of high critical temperature superconductors, this mechanism should allow for a smooth transition between such two regimes around optimal doping.Comment: 3 pages, 2 figure

    Infrared Photometry of Starless Dense Cores

    Full text link
    Deep JHKs photometry was obtained towards eight dense molecular cores and J-H vs. H-Ks color-color plots are presented. Our photometry, sensitive to the detection of a 1 solar mass, 1 X 10^6 year old star through approx. 35 - 50 magnitudes of visual extinction, shows no indication of the presence of star/disk systems based on J-H vs. H-Ks colors of detected objects. The stars detected towards the cores are generally spatially anti-correlated with core centers suggesting a background origin, although we cannot preclude the possibility that some stars detected at H and Ks alone, or Ks alone, are not low mass stars or brown dwarfs (< 0.3 Solar Masses) behind substantial amounts of visual extinction (e.g. 53 magnitudes for L183B). Lower limits to optical extinctions are estimated for the detected background stars, with high extinctions being encountered, in the extreme case ranging up to at least Av = 46, and probably higher. The extinction data are used to estimate cloud masses and densities which are comparable to those determined from molecular line studies. Variations in cloud extinctions are consistent with a systematic nature to cloud density distributions and column density variations and extinctions are found to be consistent with submillimeter wave continuum studies of similar regions. The results suggest that some cores have achieved significant column density contrasts (approx. 30) on sub-core scales (approx. 0.05 pc) without having formed known stars.Comment: 44 pages including tables and figures, accepted ApJ, March 24, 200

    Do Proto-Jovian Planets Drive Outflows?

    Get PDF
    We discuss the possibility that gaseous giant planets drive strong outflows during early phases of their formation. We consider the range of parameters appropriate for magneto-centrifugally driven stellar and disk outflow models and find that if the proto-Jovian planet or accretion disk had a magnetic field of >~ 10 Gauss and moderate mass inflow rates through the disk of less than 10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on scaling from empirical laws observed in proto-stellar outflows and the magneto-centrigugal disk and stellar+disk wind models suggest that winds with mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be driven from proto-Jovian planets. Prospects for detection and some implications for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS

    Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory

    Get PDF
    By means of different physical mechanisms, the expansion of HII regions can promote the formation of new stars of all masses. RCW 120 is a nearby Galactic HII region where triggered star formation occurs. This region is well-studied - there being a wealth of existing data - and is nearby. However, it is surrounded by dense regions for which far infrared data is essential to obtain an unbiased view of the star formation process and in particular to establish whether very young protostars are present. We attempt to identify all Young Stellar Objects (YSOs), especially those previously undetected at shorter wavelengths, to derive their physical properties and obtain insight into the star formation history in this region. We use Herschel-PACS and -SPIRE images to determine the distribution of YSOs observed in the field. We use a spectral energy distribution fitting tool to derive the YSOs physical properties. Herschel-PACS and -SPIRE images confirm the existence of a young source and allow us to determine its nature as a high-mass (8-10 MSun) Class 0 object (whose emission is dominated by a massive envelope) towards the massive condensation 1 observed at (sub)-millimeter wavelengths. This source was not detected at 24 micron and only barely seen in the MISPGAL 70 micron data. Several other red sources are detected at Herschel wavelengths and coincide with the peaks of the millimeter condensations. SED fitting results for the brightest Herschel sources indicate that, apart from the massive Class 0 that forms in condensation 1, young low mass stars are forming around RCW 120. The YSOs observed on the borders of RCW 120 are younger than its ionizing star, which has an age of about 2.5 Myr.Comment: 5 pqges, 3 figures, accepted by A&A (Special issue on the Herschel first results

    High Accretion Rate during Class 0 Phase due to External Trigger

    Full text link
    Recent observations indicate that some class 0 sources have orders of magnitude higher accretion rates than those of class I. We investigated the conditions for the high accretion rates of some class 0 sources by numerical calculations, modelling an external trigger. For no external trigger, we find that the maximum value of the accretion rate is determined by the ratio α\alpha of the gravitational energy to the thermal one within a flat inner region of the cloud core. The accretion rate reaches \sim 10^{-4} M_{\sun} yr^{-1} if the cloud core has α>2 \alpha > 2. For an external trigger we find that the maximum value of the accretion rate is proportional to the momentum given to the cloud core. The accretion rate reaches > 10^{-4} M_{\sun} yr^{-1} with a momentum of \sim 0.1 M_{\sun} km s^{-1} when the initial central density of the cloud core is 1018gcm3\sim 10^{-18} g cm^{-3}. A comparison between recent observational results for prestellar cores and our no triggered collapse model indicates that the flat inner regions of typical prestellar cores are not large enough to cause accretion rates of \sim 10^{-4} M_{\sun} yr^{-1}. Our results show that the triggered collapse of the cloud core is more preferable for the origin of the high accretion rates of class 0 sources than no triggered collapse.Comment: 7 pages, 8 figures, accepted for publication in MNRA

    Tracing the Mass during Low-Mass Star Formation. III. Models of the Submillimeter Dust Continuum Emission from Class 0 Protostars

    Get PDF
    Seven Class 0 sources mapped with SCUBA at 850 and 450 micron are modeled using a one dimensional radiative transfer code. The modeling takes into account heating from an internal protostar, heating from the ISRF, realistic beam effects, and chopping to model the normalized intensity profile and spectral energy distribution. Power law density models, n(r) ~ r^{-p}, fit all of the sources; best fit values are mostly p = 1.8 +/- 0.1, but two sources with aspherical emission contours have lower values (p ~ 1.1). Including all sources, = 1.63 +/- 0.33. Based on studies of the sensitivity of the best-fit p to variations in other input parameters, uncertainties in p for an envelope model are \Delta p = +/- 0.2. If an unresolved source (e.g., a disk) contributes 70% of the flux at the peak, p is lowered in this extreme case and \Delta p = ^{+0.2}_{-0.6}. The models allow a determination of the internal luminosity ( = 4.0 \lsun) of the central protostar as well as a characteristic dust temperature for mass determination ( = 13.8 +/- 2.4 K). We find that heating from the ISRF strongly affects the shape of the dust temperature profile and the normalized intensity profile, but does not contribute strongly to the overall bolometric luminosity of Class 0 sources. There is little evidence for variation in the dust opacity as a function of distance from the central source. The data are well-fitted by dust opacities for coagulated dust grains with ice mantles (Ossenkopf & Henning 1994). The density profile from an inside-out collapse model (Shu 1977) does not fit the data well, unless the infall radius is set so small as to make the density nearly a power-law.Comment: Accepted to ApJ. 28 pages, 13 figures, uses emulateapj5.st

    Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201

    Full text link
    We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically thick line profiles from high density tracers such as HCO+ J=1-0 show a red-shifted-absorption asymmetry reminiscent of inward motions. We construct a preliminary physical model of the circumstellar envelope (including radial density and temperature gradients, velocity field and turbulence) that reproduces the observed line profiles and estimates the ionization fraction. The presence of both mechanical and (non-ionizing) FUV-radiative input makes the region an interesting case to study triggered star formation

    The Mass Distributions of Starless and Protostellar Cores in Gould Belt Clouds

    Get PDF
    Using data from the SCUBA Legacy Catalogue (850 um) and Spitzer Space Telescope (3.6 - 70 um), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by SCUBA as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO-candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best fit slopes to the high-mass end of the CMFs of -1.26 +/- 0.20, -1.22 +/- 0.06, -0.95 +/- 0.20, and -1.67 +/- 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the -1.35 power-law slope of the Salpeter IMF at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A_V >= 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.Comment: 56 pages, 18 figures, fixed typo in Eq 1, results in paper remain unchange
    corecore